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Indoor 3D Object Detection

« Applications
« Augmented Reality
e 3D room layout planner
« Home robots

e Challenges
e Dense scene
o Cluttered objects
 Varying object sizes and shapes




Transformers as 3D Detectors

« Transformers do not require input data to have 2d/3d structures

« Suitable for modeling point cloud data as a sequence of points.

« Transformers are good at handling long sequences
« Modeling long-range relationships among all points within a scene

« Extract rich global context information
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Point-based 3D transformer detector
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Aggregated Multi-Scale Attention (MS-A)

i 1. Learnable Up-sample
[ Concat & Linear ]
‘? 24 1. Sample arbitrary points from the raw point clouds
Gieuer head=h/2]-] 2. Interpolating the input features to get the initial up-
A
rAﬁenﬁonheadzo ]J sampled features.
I 3 L .
=T = T — . Learnable network layer that projects the
e | N S R
Q K, .V, K,,V, interpolated features.
ﬁ ﬁ ﬁ 2. Multi-scale feature aggregation
1. Different subsets of the attention head use features
Upsample
of different resolution.
Object Features  Point Features Upsampled Point Features 2. The forward computation doesn’t increase.

{ai}y {m}; {& 1



Size-Adaptive Local Attention (Local-A)
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Improvements on small objects
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(a) Per size-category (S/M/L) mAPs on ScanNetV2.
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(b) Per size-category (S/M/L) mAPs on SUN-RGBD.

We measure the mean average precision (mAP)
within different size categories (small / medium /
large).

The proposed hierarchical point attention bring
most significant performance gain in small objects.
Our attention modules can be plugged into any
point-based transformer detector.

We are able to further improve the SOTA model.



Ablation Study

TABLE III
THE EFFECT OF Nj,.q; IN LOCAL-A.

When there are enough points, a larger N;ocal means the points are sampled
more densely within each bounding box proposal.

Niocal | MAP@025 mAP@0.50 | mAPs mAPy mAP,

8 67.8 51.1 64.3 77.2 82.8
16 68.8 52.3 65.1 719 83.4
24 68.7 52.3 65.2 71.7 83.5
32 68.3 52.1 64.7 71.3 83.8

TABLE IV

MS-A WITH DIFFERENT FEATURE SCALES.

Feature scale = s means the feature map contains s X [N points. A larger s
denotes a feature map with higher point density (i.e., resolution)

Scales s | mAP@0.25 mAP@0.50 | mAPs mAPy; mAPg

[1] 68.6 51.8 63.1 76.6 83.2
(1,2] 68.9 52.5 65.0 71.5 83.9
[0.5,1,2] 67.9 51.7 64.6 76.7 83.9
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Thank you!



