Hierarchical Point Attention for Indoor 3D Object Detection

Manli Shu^{1,2} Le Xue² Ning Yu² Roberto Martín-Martín^{2,3} Caiming Xiong² Tom Goldstein¹ Juan Carlos Niebles^{2,4} and Ran Xu²

¹ University of Maryland, College Park, MD, U.S.A.
² Salesforce Research, Palo Alto, CA, U.S.A.
³ University of Texas, Austin, TX, U.S.A.
⁴ Stanford University, CA, U.S.A.

Indoor 3D Object Detection

- Applications
 - Augmented Reality
 - 3D room layout planner
 - Home robots
 - ...
- Challenges
 - Dense scene
 - Cluttered objects
 - Varying object sizes and shapes

Transformers as 3D Detectors

- Transformers do not require input data to have 2d/3d structures
 - Suitable for modeling point cloud data as a sequence of points.
- Transformers are good at handling long sequences
 - Modeling long-range relationships among all points within a scene
 - Extract rich global context information

Point-based 3D transformer detector

Aggregated Multi-Scale Attention (MS-A)

- 1. Learnable Up-sample
 - 1. Sample arbitrary points from the raw point clouds
 - Interpolating the input features to get the initial upsampled features.
 - Learnable network layer that projects the interpolated features.
- 2. Multi-scale feature aggregation
 - Different subsets of the attention head use features of different resolution.
 - 2. The forward computation doesn't increase.

Size-Adaptive Local Attention (Local-A)

- 1. Attention region definition
 - Obtain intermediate bounding box proposals from the current object candidate feature.
 - 2. For each object (Q), only use point features within its bounding box proposal as the K and V for attention.
- 2. Batch processing
 - A batch of object candidates (Q) have different sets of K and V (of different lengths).
 - 2. We do padding/truncation for batch processing.

Improvements on small objects

(a) Per size-category (S/M/L) mAPs on ScanNetV2.

- We measure the mean average precision (mAP) within different size categories (small / medium / large).
- The proposed hierarchical point attention bring most significant performance gain in small objects.
- Our attention modules can be plugged into any point-based transformer detector.
- We are able to further improve the SOTA model.

Ablation Study

TABLE III

The effect of N_{local} in Local-A.

When there are enough points, a larger $N_l ocal$ means the points are sampled more densely within each bounding box proposal.

N_{local}	mAP@0.25	mAP@0.50	$\mid mAP_S$	mAP_M	mAP_L
8	67.8	51.1	64.3	77.2	82.8
16	68.8	52.3	65.1	77.9	83.4
24	68.7	52.3	65.2	77.7	83.5
32	68.3	52.1	64.7	77.3	83.8

TABLE IV

MS-A with different feature scales.

Feature scale = s means the feature map contains $s \times N$ points. A larger s denotes a feature map with higher point density (*i.e.*, resolution)

Scales s	mAP@0.25	mAP@0.50	$\mid mAP_S$	mAP_M	mAP_L
$[1] \\ [1,2] \\ [0.5,1,2]$	68.6	51.8	63.1	76.6	83.2
	68.9	52.5	65.0	77.5	83.9
	67.9	51.7	64.6	76.7	83.9

Thank you!